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1 Introduction

After the famous work of A.Belavin and V.Knizhnik [1] it turned out that perturbative

string theory can by built using the Mumford measure [2] on the moduli space of algebraic

curves, that is summation over all world-sheets can be replaced by integration over the mod-

uli space with this measure. For NSR superstring there should be a whole collection of mea-

sures for every genus [3], corresponding to different boundary conditions for fermionic fields.

They are labeled by semi-integer theta-characteristic: collections of zeroes and unities, as-

sociated with non-contractable cycles of the Riemann surface. While bosonic string could

be studied without Belavin-Knizhnik theorem, for super- and heterotic strings this is abso-

lutely impossible, because GSO projection requires to sum holomorphic NSR measures over

characteristics before taking their bilinear combinations with complex conjugate measures.

It is a long-standing problem to find these NSR superstring measures (see [4] for a

recent review and numerous references). The direct way to derive them from the first

principles turned to be very hard, and it took around 20 years before E.D’Hoker and

D.Phong in a long series of papers managed to do this in the case of genus 2 [5]. Higher

genera seem to be even harder. However, there is another, seemingly simpler approach

to the problem: to guess the answer from known physical and mathematical requirements

which it is supposed to satisfy. This approach proved to be quite effective in the case of

bosonic strings [6] and, after the new insight from [5] it was successfully applied to the case

of NSR measures in [7]–[13]. In the present paper we discuss ansätze for NSR measures,

which were proposed following this second way of attacking the problem.
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In [6] the physical problem for low genera was reformulated as one in the theory of

modular forms: one needs to construct semi-modular forms of the weight 8 with certain

properties. There are two obvious ways to represent such forms: through ordinary Riemann

theta-constants and through lattice theta-constants. Accordingly there are two ansätze for

NSR measures at low genera. One — in terms of Riemann theta constants – was suggested

in [5, 7] and in its final appealing form by S. Grushevsky in [8] and the other — in terms

of lattice theta constants, associated with the eight (six odd and two even) 16-dimensional

unimodular lattices. – by M.Oura, C.Poor, R.Salvati Manni and D.Yuen in [13].

In fact the theory of modular forms is hard, it is being built anew for every new genus,

and it is even a question which benefits more from the other: string theory from the theory

of modular forms or vice versa. In this paper we continue the study of relations between

lattice theta constants and Riemann theta constants. We write explicit formulae expressing

the lattice theta constants through Riemann theta constants in all genera and for all odd

lattices except one. For this remaining one we write explicit formulae in genera g ≤ 4 and

discuss a hypothesis of how it may look in higher genera. These formulae look as follows:

ϑ(g)
p = 2−gpξ(g)

p , p = 0..4, (1.1)

ϑ
(g)
5 = 2−

g(g−1)
2 ·

(
g∏

i=1

(
2i − 1

)
)−1

G(g)
g (1.2)

(see section 3 for description of our notation). It is interesting that for the first five odd

lattices the proof is provided by a simple rotation of the lattice with the help of the so-called

Hadamard matrices.

In other parts of the paper we discuss modular-form ansätze for NSR measures and

relations between them. According to [1, 6] the measures are written as

dµ[e] = Ξ[e]dµ, (1.3)

where dµ is the Mumford measure, and they are subjected to the following conditions:

1. Ξ[e] are (semi-)modular forms of weight 8, at least for low genera,

2. they satisfy factorization property when Riemann surface degenerates,

3. the ”cosmological constant” should vanish:
∑

e Ξ[e] = 0,

4. for genus 1 the well known answer should be reproduced.

For detailed description of these properties see the next section.

Let us briefly describe the modern ansätze [7]–[13], inspired by [5].

In Grushevsky ansatz Ξ[e] is written as a linear combination of functions ξp[e], which

are sums over sets of p characteristics of monomials in Jacobi theta constants of order 16.

This is literally true for genera g ≤ 4, for g > 4 roots of monomials in Riemann theta

constants appear, but the total degree remains 16. This ansatz may in principle be written

for any genus, however it satisfies all conditions only for genera g ≤ 4. At genus 5 in its

pure form it fails to satisfy the cosmological constant property [12].

– 2 –
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In OPSMY ansatz expressions for Ξ[0] are written in terms of lattice theta constants,

corresponding to six odd unimodular lattices of dimension 16. OPSMY showed that for

g ≤ 4 these lattice theta constants span the entire space of holomorphic functions on the

Siegel half-space H, which are modular forms under Γg (1, 2). However, because the number

of these lattices is fixed, they doubtly span this space for g ≥ 6, because the dimension

of this space can grow (in fact, it is known that it doesn’t grow starting from g ≥ 17; in

principle it is possible that this dimension becomes stable already at genus 5). This fact

that the number of lattice theta constants is limited leads to the following: OPSMY ansatz

cannot be written for g ≥ 6 because in these cases one cannot compose from lattice theta

constants anything that would satisfy factorization constraint.

Both Grushevsky and OPSMY ansätse potentially have problems in genus 5, because it

turned out that in their pure form the cosmological constant does not vanish. Grushevsky

and OPSMY then propose to resolve this problem by brute force: if we have a sum of

several terms, which should be zero, but apparently is not,
∑

e

Ξ[e](5) (τ) = F (5) (τ) 6= 0, (1.4)

then we can subtract from each term the sum, divided by number of terms. Then the sum

of the modified terms will obviously vanish:

∑

e

Ξ̃[e](5) (τ) =
∑

e

(
Ξ[e](5) (τ) −

1

Neven
F (5) (τ)

)
= 0 (1.5)

This indeed solves the problem in genus 5, because in this particular case such change of

Ξ[e] does not spoil the factorization constraint, since F for all genera g < 5 vanishes on

moduli subspace in the Siegel half-space and thus vanishes whenever the genus-5 surface

degenerates. Thus at genus 5 there can be a way out of cosmological constant problem, at

least formally.

However this solution for genus 5 doesn’t seem very natural because of the following

consideration. For all genera g ≤ 3 the moduli space (i.e. the Jacobian locus) coincides with

the Siegel half-space. Therefore the cosmological constant, being zero on moduli, vanishes

on entire Siegel space. However, for genus 4 the moduli space becomes non-trivial: it is a

rather sophisticated subspace of codimension one in the Siegel half-space. And in this case

cosmological constant vanishes only on moduli, but remains nonzero at other points of the

Siegel half-space. It is more than natural to expect the same for g = 5: that cosmological

constant also does not vanish on the entire Siegel half-space in genus 5. However the ansatz,

obtained by subtraction trick makes cosmological constant zero on entire H. Already this

makes it somewhat unnatural. This feeling is confirmed by the fact that the trick fails to

work for genus 6 and higher: if we try to resolve the problem with cosmological constant

in the same way, we lose the factorization property already at g = 6.

It deserves emphasizing that there is no reason to believe that Ξ[e] in (1.3) is expressed

through modular forms for g > 4. One could only hope and try. As we see, the result

seems negative, still a lot of interesting details can be learnt in the process. Anyhow, at

this moment it is unclear what to do with the superstring measures at genus 6 and above

(and the suggested answer for g = 5 is also not very convincing).

– 3 –
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The structure of the paper is as follows. In section 2 we discuss mathematical conditions

on NSR superstring measures. In section 3 Riemann theta constants are introduced and

Grushevsky ansatz is described. In the next section 4 lattice theta constants, associated

with self-dual 16-dimensional lattices, are introduced and OPSMY ansatz is discussed.

Section 5 is central to the paper and is devoted to explicit relation between lattice and

ordinary theta constants. The following section 6 is about the strange behaviour of the

theta constant, associated with the sixth odd lattice (D8 ⊕ D8)
+. And finally in the last

section 7 we discuss the relation between Grushevsky and OPSMY ansätze. We show

explicitly that Grushevsky and OPSMY ansätze coincide for genera g ≤ 4, which is in

perfect agreement with the uniqueness properties proved by both Grushevsky and OPSMY.

Then we discuss the relation between the ansätze for genus 5.

2 The problem of finding superstring measures

In this section we discuss the mathematical problem of finding the NSR superstring mea-

sures in the framework of the modular-form hypothesis [6].

First of all, we review the setting. Superstring measures at genus g, which we are

intended to find, form a set of measures {dµe} on the moduli space of algebraic curves

of genus g. Here index e stands for an even characteristic, labeling boundary conditions

for fermionic fields on the curve [3]. A characteristic is by definition a collection of two

g-dimensional Z2-vectors, i.e. e ∈ (Zg
2)

2
. We write

e =

[
~δ

~ε

]
, (2.1)

where ~δ, ~ε ∈ Z
g
2. A characteristic is called even if the scalar product ~δ · ~ε is even. There

are Neven = 2g−1 (2g + 1) even characteristics in genus g.

On the moduli space there is already a distinguished measure – the Mumford measure

dµ [1, 2, 6].

It was proposed in [1, 6] that superstring measures are expressed in terms of the

Mumford measure in the following way:

dµe = Ξedµ, (2.2)

with Ξe being some functions on moduli space, satisfying certain conditions.

To pass to this conditions we shall first introduce a convenient way to describe some

functions on moduli space. Period matrices of the curves, corresponding to particular

points in the moduli space, lie in the so-called Siegel half-space H(g). H(g) is simply the

space of g× g symmetric complex matrices τ with positive definite imaginary part and has

(complex) dimension g(g+1)
2 . Period matrices form the so-called Jacobian locus M inside

it, which is a submanifold (strictly speaking, suborbi fold) of complex dimension 3g − 3

(for g ≥ 2; for g = 1 the dimension is also 1). We then can identify the moduli space

with the Jacobian locus and consider a class of functions on moduli space, which depend

on τ , i.e. which can be somehow analytically continued to H(g). One should be cautious

– 4 –
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here: not all the functions on moduli space are of this type, most important, the ones

that arise in the free-field calculus on complex curves [14], and are the building blocks for

the string measures in straightforward approach, do not usually belong to this class. Still,

at least at low genera, they combine nicely into functions, which depend only on τ (the

first non-trivial example of this kind was the formula for the Mumford measure at genus

4 in [6] — actually not proved in any alternative way till these days), and this motivated

the search for Ξ[e] inside this class [15] and nearby [16].

Also let us define the notion of modular form, since under above hypothesis Ξ[e] would

be of such type. The modular group is defined as Γ(g) =def Sp(2g, Z) and it acts on H(g) as

follows:

γ =

(
A B

C D

)
∈ Γ ≥ g, (2.3)

γ : τ 7→ (Aτ + B) (Cτ + D)−1 . (2.4)

Then holomorphic function f on H is called a modular form of weight k with respect to

subgroup Γ′ of the modular group if it satisfies the following property:

f (γτ) = det (Cτ + D)k f (τ) (2.5)

for all γ ∈ Γ′.

We will be interested in one particular subgroup of the modular group, which is called

Γ(1, 2). It is defined as follows: an element

γ =

(
A B

C D

)
(2.6)

of the modular group belongs to Γ(1, 2) iff all elements on diagonals of matrices ABT and

CDT are even. This subgroup is interesting in conjunction with theta constants, which

will be defined in following sections. Now we can say that while action of a general element

of the modular group on a Riemann theta constant changes its characteristic, the action

of an element of Γ(1, 2) leaves zero characteristic invariant.

We finally come to the announced conditions on functions Ξe and are eventually able to

formulate the problem about superstring measures as a well-posed mathematical problem.

So, the question is as follows: are there any functions Ξe in every genus g, which satisfy

the following three properties?

1. Ξe is a modular form of weight 8 with respect to subgroup Γe ⊂ Γ ≥ g, at least when

restricted to the Jacobian locus. Sometime such forms are called semi-modular. The

subgroup is defined as Γe =def γ[e]Γg (1, 2) γ[e]−1, where γ[e] is an element of Γg,

which transforms the zero characteristic to characteristic e. Saying that an element

of the modular group acts on a characteristic, we mean that it acts on the Riemann

theta constant, associated with this characteristic and transforms it into Riemann

theta constant with another characteristic. Riemann theta constants will be defined

in section 3.

– 5 –
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2. Ξe satisfies the following factorization property :

Ξ(g)[e]

(
τ (g1) 0

0 τ (g−g1)

)
= Ξ(g1)

e1

(
τ (g1)

)
Ξ

(g−g1)
e/e1

(
τ (g−g1)

)
(2.7)

3. Ξ[e] satisfies the property of vanishing cosmological constant :

∑

e

Ξe (τ) = 0 (2.8)

One should keep in mind that the naming convention for this property is a bit abused,

because cosmological constant is actually the integral of the total measure over all

string configurations. Here it is not the case: when we say that cosmological constant

vanishes, we mean that this happens point-wise: the total measure is zero at every

point τ of the moduli space.

4. For genus one Ξe reproduces the known answer from elementary superstring the-

ory [3]:

Ξe ≥ 1 = θ4[e]

3∏

e′

θ[e′]4 = θ16[e] −
1

2
θ8[e]

(
∑

e′

θ8[e′]

)
(2.9)

Here θ[e] (τ) stands for Jacobi theta constant, see section 3 below. This property is im-

portant, because factorization condition iteratively reduces all measures to genus one.

Addressing this mathematical problem is actually an attempt to guess the answer for

superstring measures from their known properties instead of doing the calculation from the

first principles, which is very difficult in higher genera. We would face a difficulty on this

way if it turned out that there are several different possible collections Ξe in some genus,

satisfying all these conditions. However, this is not the case, moreover the situation is quite

the opposite. There are two ansätze proposed, which give the same results up to the genus

5 and do not work further. Thus today it looks like it is impossible to give the answer

for genera g ≥ 6 in such terms. The answer to the overoptimistic question, if superstring

measures or, more carefully, the ratios dµ[e]/dµ, can be represented as semi-modular forms

on entire Siegel half-space for all genera, now seems to be negative. We should look either

for more sophisticated combinations of modular forms, including residues of Schottky forms

like in bosonic measure at genus four, or even switch to the functions, which are modular

forms only when restricted to Jacobian locus.

In the two following sections we review the two available ansätze and then use them

to illustrate this negative claim.

3 Grushevsky ansatz

First of all, we need to introduce the Riemann theta constants, which are the functions

on the Siegel half-space, in terms of which the ansatz is written. Note that this usual

terminology is rather misleading here, because they are indeed functions, not constants

on the Siegel half-space. This naming convention reflects the fact that there is a notion

– 6 –



J
H
E
P
1
0
(
2
0
0
9
)
0
7
2

of ”Riemann theta function” which is a function not only of the modular parameter τ ,

but also of coordinates ~z on the Jacobian (a g-dimensional torus), associated to this value

of modular parameter. In this context the theta functions with ~z = 0 are usually called

”theta constants”, because they do not depend on ~z. In the present paper we will use only

theta constants – and call them constants to avoid possible confusion, despite we need and

use them as functions on the Siegel half-space.

So the Riemann theta constant with characteristic at genus g is defined as follows [17]:

θ

[
~δ

~ε

]
(τ)

def
=
∑

~n∈Zg

exp

(
πi
(
~n + ~δ/2

)T
τ
(
~n + ~δ/2

)
+ πi

(
~n + ~δ/2

)T
~ε

)
(3.1)

All Riemann theta constants with odd characteristics are identically zero.

It turns out that Riemann theta constants are the nice building blocks for modular

forms on the Siegel half-space. More precisely, they behave in the following way under

modular transformations γ ∈ Γ(1, 2):

θ

[
D~δ − C~ε

−B~δ + A~ε

]
(γτ) = ζγ det (Cτ + D)1/2

× exp

(
πi

4

(
2~δT BTC~ε − ~δT BT D~δ − ~εT AT C~ε

))
θ

[
~δ

~ε

]
(τ) , (3.2)

where ζγ is some eighth root of unity which depends only on γ. It is then straightforward

to see that θ16[0] is a modular form of weight 8 w.r.t. Γ (1, 2). The sum of θ16[e] over all

even characteristics will be a modular form of weight 8 w.r.t. the whole modular group.

When we write [0] we everywhere mean zero characteristic, i.e. characteristic, for which all

elements of both vectors ~δ and ~ε are zeroes.

In any genus Grushevsky ansatz can be expressed through the following combinations

of Riemann theta constants [4, 7] (for brevity we write characteristics as indices in the r.h.s.)

ξ
(g)
0 [e] = θ16

e ,

ξ
(g)
1 [e] = θ8

e

Ne∑

e1

θ8
e+e1

,

ξ
(g)
2 [e] = θ4

e

Ne∑

e1,e2

θ4
e+e1

θ4
e+e2

θ4
e+e1+e2

,

ξ
(g)
3 [e] = θ2

e

Ne∑

e1,e2,e3

θ2
e+e1

θ2
e+e2

θ2
e+e3

θ2
e+e1+e2

θ2
e+e1+e3

θ2
e+e2+e3

θ2
e+e1+e2+e3

,

. . . (3.3)

ξ(g)
p [e]=

Ne∑

e1,...,ep



θe ·

(
p∏

i

θe+ei

)
·




p∏

i<j

θe+ei+ej


 ·




p∏

i<j<k

θe+ei+ej+ek


 · . . . · θe+e1+...+ep





24−p

– 7 –
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in the following way:

Ξ(g)[0] =

g∑

p=0

h(g)
p ξ(g)

p [0], (3.4)

where

h(g)
p = (−1)p · 2

(g−p)2−(g+p)
2 ·

(
p∏

i=1

(
2i − 1

) g−p∏

i=1

(
2i − 1

)
)−1

(3.5)

Other Ξ[e] are obtained just by substituting e instead of 0 into ξ[0]. Formula (3.5) be-

comes more compact if written in terms of the so-called 2-factorial numbers (for definition

of q-factorials and q-binomial coefficients see, for example, [18]):

h(g)
p =

(−1)p

[p]2![g − p]2!
· 2

(g−p)2−(g+p)
2 (3.6)

Explicitly the first five forms look like (when we write ξp without characteristic, we mean

ξp[0])

Ξ(1)[0] = ξ0 −
1

2
ξ1, (3.7)

Ξ(2)[0] =
2

3
ξ0 −

1

2
ξ1 +

1

12
ξ2, (3.8)

Ξ(3)[0] =
8

21
ξ0 −

1

3
ξ1 +

1

12
ξ2 −

1

168
ξ3, (3.9)

Ξ(4)[0] =
64

315
ξ0 −

4

21
ξ1 +

1

18
ξ2 −

1

168
ξ3 +

1

5040
ξ4, (3.10)

Ξ(5)[0] =
1024

9765
ξ0 −

32

315
ξ1 +

2

63
ξ2 −

1

252
ξ3 +

1

5040
ξ4 −

1

312480
ξ5 (3.11)

Alternatively one can use the so-called Grushevsky basis [4, 8]:

G
(g)
0 [e] = θ16

e ,

G
(g)
1 [e] = θ8

e

Ne∑

e1 6=0

θ8
e+e1

,

G
(g)
2 [e] = θ4

e

Ne∑

e1 6=e2 6=0

θ4
e+e1

θ4
e+e2

θ4
e+e1+e2

,

G
(g)
3 [e] = θ2

e

Ne∑

e1 6=e2 6=e3 6=0

θ2
e+e1

θ2
e+e2

θ2
e+e3

θ2
e+e1+e2

θ2
e+e1+e3

θ2
e+e2+e3

θ2
e+e1+e2+e3

,

. . . (3.12)

G(g)
p [e]=

Ne∑

e1 6=...6=ep 6=0

{
θe ·

( p∏

i

θe+ei

)
·

( p∏

i<j

θe+ei+ej

)

·

( p∏

i<j<k

θe+ei+ej+ek

)
· . . . · θe+e1+...+ep

}24−p

– 8 –
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Here sums are taken over sets of characteristics in which all characteristics are different.

This basis is related to ξ
(g)
p basis as follows:

G(g)
p [e] =

p∑

k=0

(−1)k+p · 2
(p−k)(p−k−1)

2 ·

p∏

i=1

(
2i − 1

)

k∏

i=1

(
2i − 1

) p−k∏

i=1

(
2i − 1

)
ξ
(g)
k [e] =

=

p∑

k=0

(−1)k+p · 2
(p−k)(p−k−1)

2

(
p

k

)

2

ξ
(g)
k [e], (3.13)

where in the last line the 2-binomial coefficients were used (also known as Gaussian binomial

coefficients for q = 2).

Expressions for Ξ(g)[0] are then written in terms of Grushevsky basis as

Ξ(g)[0] =

g∑

p=0

f (g)
p G(g)

p [0], (3.14)

where

f (g)
p = (−1)p · 2−g ·

(
p∏

i=1

(
2i − 1

)
)−1

= (3.15)

= (−1)p · 2−g ·
1

[p]2!
. (3.16)

Explicitly the first five lines look like

Ξ(1)[0] =
1

2
(G0 − G1) ,

Ξ(2)[0] =
1

4

(
G0 − G1 +

1

3
G2

)
,

Ξ(3)[0] =
1

8

(
G0 − G1 +

1

3
G2 −

1

21
G3

)
,

Ξ(4)[0] =
1

16

(
G0 − G1 +

1

3
G2 −

1

21
G3 +

1

315
G4

)
,

Ξ(5)[0] =
1

32

(
G0 − G1 +

1

3
G2 −

1

21
G3 +

1

315
G4 −

1

9765
G5

)
(3.17)

When we write Gp without characteristic, we mean Gp[0].

Let us denote the sum of all Ξ[e] of the Grushevsky ansatz, i.e. the proposed cosmo-

logical constant, as F (g) in genus g. It can be proved [12] that it is equal (up to a constant

factor) to the following celebrated expression in theta constants [1, 6]:

F (g) = 2g
∑

e

θ16[e] −

(
∑

e

θ8[e]

)2

, (3.18)
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It can be checked that Grushevsky ansatz satisfies the above requirements for su-

perstring measures in genera g ≤ 4. However it fails to do so in genus 5 because the

cosmological constant F (5) turns to be nonzero [12]. Grushevsky proposes a way to over-

come this problem: consider instead of Ξ[e] functions Ξ[e]−N−1
evenF . This obviously solves

the cosmological constant problem and moreover does not spoil other properties in the case

of genus 5. The factorization property is not spoilt because F (g) is zero on the Jacobian

locus for all genera up to 4 includingly, and thus is zero on points of the Jacobian locus of

the Siegel space of genus 5 that correspond to factorization.

So, with a bit of modification the ansatz apparently works up to genus 5 includingly.

Since the solution looks strange – as we discussed in the introduction – condition (2.8)

should probably be modified (strengthened) in order to exclude such a way out, however

under the present constraints the problem has a formal solution for g = 5. However for

genus 6 and above the same problem persists and can not be cured anymore by the above-

mentioned trick even formally, because it spoils the factorization property for that cases:

when a genus-six curve degenerates it can become a genus-five curve of generic kind, and

F (5) does not vanish identically even on the moduli space.

4 OPSMY ansatz

Another ansatz for superstring measures was proposed by M.Oura, C.Poor, R.Salvati

Manni and D.Yuen in their paper [13]. It is expressed in terms of lattice theta constants

of 16-dimensional unimodular lattices, well familiar from the study of string compactifica-

tions [19]. Still we need to remind what they are.

An h-dimensional lattice Λ is a subset of R
h which is spanned by linear combinations

with integer coefficients of some h linearly independent vectors. These h vectors together

are called the basis of the lattice.

Naturally associated with the lattice Λ is a genus-g lattice theta constant: a function

on the Siegel space H, defined as

ϑΛ (τ)
def
=

∑

(~p1,...,~pg)∈Λg

exp
(
πi(~pk · ~pl)τkl

)
, (4.1)

where (~p · ~p′) denotes the usual Euclidean scalar product of vectors in R
h, and summation

is always assumed over repeated indices k and l. Lattice theta-constants have a very simple

factorization property: they remain themselves:

ϑ
(g1+g2)
Λ

(
τ (g1) 0

0 τ g2)

)
= ϑ

(g1)
Λ

(
τ (g1)

)
ϑ

(g2)
Λ

(
τ (g2)

)
(4.2)

A lattice is called self-dual, or unimodular, if it coincides with its dual lattice, i.e. if

Λ = Λ∗. The dual lattice Λ∗ is defined as the set of all vectors ~u of R
h such that (~u ·~v) ∈ Z

for all ~v ∈ Λ. A lattice is called even if Euclidean norms of all basis vectors are even.

Otherwise the lattice is called odd.

Lattice theta constant corresponding to self-dual h-dimensional lattice with h divisible

by 8 is a modular form of weight h/2 w.r.t. Γg (1, 2) if the lattice is odd, and w.r.t. the
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Short notation for Lattice Gluing vectors

lattice theta constant

ϑ0 Z
16 —

ϑ1 Z
8 ⊕ E8 —

ϑ2 Z
4 ⊕ D+

12

(
04, 1

2

12
)

ϑ3 Z
2 ⊕ (E7 ⊕ E7)

+
(

1
4

6
,−3

4

2
, 1

4

6
,−3

4

2
)

ϑ4 Z ⊕ A+
15

(
1
4

12
,−3

4

4
)

,
(

1
2

8
,−1

2

8
)

,
(

3
4

4
,−1

4

12
)

ϑ5 (D8 ⊕ D8)
+

(
1
2
8
, 07, 1

)

ϑ6 E8 ⊕ E8 —

ϑ7 D+
16

(
1
2

16
)

Table 1. Lattice theta constants.

full Γg when the lattice is even. Therefore lattice theta constants of 16-dimensional self-

dual lattices are semi-modular forms of the weight 8 and of particular interest for building

superstring measures.

There are exactly eight 16-dimensional self-dual lattices [20], all of them can be ob-

tained from root lattices of some Lie algebras. We list them with convenient notations in ta-

ble 1.

The first column lists the naming conventions for theta constants corresponding to

lattices, the second column presents lattices themselves and the third column contains

gluing vectors of particular lattices. Here Z
n denotes the trivial integer lattice Z

n ⊂ R
n.

Ak, Dk and Ek stand for root lattices of the corresponding Lie algebras. Cross over the

name of a lattice (i.e. Λ+) means the union of this lattice with lattices obtained by shifting it

by all of its gluing vectors. For notation to be concise, we follow [20] and write an for a, . . . , a

with n instances of a (e.g.
(

1
2

2
,−12, 0

)
means

(
1
2 , 1

2 ,−1,−1, 0
)
). Also note that E8 = D+

8

with the gluing vector
(

1
2
8
)
. First six lattices in the table are odd and the last two are even.

Note that in the paper [13] the short notations ϑi are also used for the lattice theta

constants, but our convention for numbering them is different. We have a reason for that,

which will be explained at the end of section 5.

OPSMY use these lattice theta constants to write ansatz for superstring measures [13].

Their idea is as follows: because all these lattice theta constants are modular forms of weight

8 with respect to subgroup Γ (1, 2) of the modular group, it is natural to try to build Ξ[0]

out of them and then obtain all Ξ[e] by acting on Ξ[0] by modular transformations.

In fact OPSMY prove that up to genus 4 these lattice theta constants span the entire

space of modular forms of weight 8 with respect to Γ(1, 2) and also find all the linear

relations among them:

g = 1 :

ϑ2 =
3

2
ϑ1 −

1

2
ϑ0
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ϑ3 =
7

4
ϑ1 −

3

4
ϑ0

ϑ4 =
15

8
ϑ1 −

7

8
ϑ0

ϑ5 = 2ϑ1 − ϑ0 (4.3)

g = 2 :

ϑ3 =
7

4
ϑ2 −

7

8
ϑ1 +

1

8
ϑ0

ϑ4 =
35

16
ϑ2 −

45

32
ϑ1 +

7

32
ϑ0

ϑ5 =
8

3
ϑ2 − 2ϑ1 +

1

3
ϑ0 (4.4)

g = 3 :

ϑ4 =
15

8
ϑ3 −

35

32
ϑ2 +

15

64
ϑ1 −

1

64
ϑ0

ϑ5 =
64

21
ϑ3 −

8

3
ϑ2 +

2

3
ϑ1 −

1

21
ϑ0 (4.5)

g = 4 :

ϑ5 =
M

1024

315
ϑ4 −

64

21
ϑ3 +

8

9
ϑ2 −

2

21
ϑ1 +

1

315
ϑ0 (4.6)

Here M under the equation sign means that the equality is valid when restricted to Jaco-

bian locus.

Actually, in the last line a combination ϑ6−ϑ7 also enters, but it vanishes on Jacobian

locus. So the linear relation looks as above only on Jacobian locus. In fact, the combination

ϑ6 − ϑ7 would be proportional to the cosmological constant. For g ≥ 5 all 8 lattice theta

constants (including even ones) are linearly independent, and it is unknown if they span

the entire space of Γ(1, 2)-modular forms (which is unlikely at least for g ≥ 6).

Let us now describe the OPSMY ansatz for superstring measures. Our formulas will

look a little different from [13]. First, we choose different enumeration of lattice theta

constants, as it was already mentioned, and, second, we choose different normalization for

the Ξ function for genus 1, so that

Ξ(1)[0] = ϑ0 − ϑ1 = θ16[0] −
1

2
θ8[0]

∑

e

θ8[e] (4.7)

instead of

Ξ
(1)
OPSMY [0] =

1

16
ϑ0 −

1

16
ϑ1 =

1

16
θ16[0] −

1

32
θ8[0]

∑

e

θ8[e] (4.8)

which is chosen in [13]. Therefore Ξ(g) would differ by a 24g factor.

Let M be the following 6 × 6 matrix with indexes running from 0 to 5:

Mij = 2j(1−i), i = 0..4, j = 1..5,

Mi0 = 1, i = 0..5,

M5j = 0, j = 1..5 (4.9)
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Explicitly,

M =




1 2 4 8 16 32

1 1 1 1 1 1

1 1
2

1
4

1
8

1
16

1
32

1 1
4

1
16

1
64

1
256

1
1024

1 1
8

1
64

1
512

1
4096

1
32768

1 0 0 0 0 0




(4.10)

Then Ξ[0] functions of OPSMY ansatz in genera g ≤ 5 are

Ξ(g)[0] =

5∑

k=0

(
M−1

)
gk

ϑ
(g)
k , g = 1 . . . 5 (4.11)

(for genus 5 OPSMY, actually, propose different expression, see below). In this ansatz we

cannot write expressions of Ξ[e] for general e as explicitly as in Grushevsky ansatz, Ξ[e]

are obtained from Ξ[0] by action of particular element γe of the modular group.

Explicitly,

Ξ(1)[0] =
1

630
ϑ0 −

2

21
ϑ1 +

16

9
ϑ2 −

256

21
ϑ3 +

8192

315
ϑ4 −

31

2
ϑ5,

Ξ(2)[0] = −
1

42
ϑ0 +

29

21
ϑ1 − 24ϑ2 +

2944

21
ϑ3 −

4096

21
ϑ4 +

155

2
ϑ5,

Ξ(3)[0] =
1

9
ϑ0 − 6ϑ1 +

808

9
ϑ2 − 384ϑ3 +

4096

9
ϑ4 − 155ϑ5,

Ξ(4)[0] = −
4

21
ϑ0 +

184

21
ϑ1 − 96ϑ2 +

7424

21
ϑ3 −

8192

21
ϑ4 + 124ϑ5,

Ξ(5)[0] =
32

315
ϑ0 −

64

21
ϑ1 +

256

9
ϑ2 −

2048

21
ϑ3 +

32768

315
ϑ4 − 32ϑ5 (4.12)

Substituting linear relations from (4.3)–(4.6), we obtain:

Ξ(1)[0] = ϑ0 − ϑ1, (4.13)

Ξ(2)[0] =
2

3
ϑ0 − 2ϑ1 +

4

3
ϑ2, (4.14)

Ξ(3)[0] =
8

21
ϑ0 −

8

3
ϑ1 +

16

3
ϑ2 −

64

21
ϑ3, (4.15)

Ξ(4)[0] =
64

315
ϑ0 −

64

21
ϑ1 +

128

9
ϑ2 −

512

21
ϑ3 +

4096

315
ϑ4, (4.16)

Ξ(5)[0] =
32

315
ϑ0 −

64

21
ϑ1 +

256

9
ϑ2 −

2048

21
ϑ3 +

32768

315
ϑ4 − 32ϑ5 (4.17)

It turns out that for genus 5 the cosmological constant for this Ξ(5) is still proportional

to ϑ6 −ϑ7 and therefore is non-vanishing [12]. Therefore OPSMY propose to cure it in the

same way which was used with the Grushevsky ansatz. They find the numerical value of

ratio of
∑

e Ξ[e] and ϑ6 − ϑ7 and subtract from Ξ[0] this expression with this coefficient,

divided by the number of characteristics. In our normalization this looks like

Ξ̃(5)[0]=
32

315
ϑ0−

64

21
ϑ1+

256

9
ϑ2−

2048

21
ϑ3+

32768

315
ϑ4−32ϑ5−

686902

24255
ϑ6+

686902

24255
ϑ7 (4.18)
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This ansatz cannot be continued to g = 6 and above. One can easily understand the

problem, for example, in the following way. The factorization property requires that,

Ξ(6)
(
τ

(6)
1+1+1+1+1+1

)
=Ξ(1)

(
τ

(1)
1

)
Ξ(1)

(
τ

(1)
2

)
Ξ(1)

(
τ

(1)
3

)
Ξ(1)

(
τ

(1)
4

)
Ξ(1)

(
τ

(1)
5

)
Ξ(1)

(
τ

(1)
6

)
,

(4.19)

and if we had Ξ(6) expressed as a linear combination of lattice theta constants Ξ(6) =
7∑

p=0

αpϑp, then, using (4.2),

7∑

p=0

αpϑ
(1),1
p ϑ(1),2

p ϑ(1),3
p ϑ(1),4

p ϑ(1),5
p ϑ(1),6

p = (4.20)

=
(
ϑ

(1),1
0 −ϑ

(1),1
1

)(
ϑ

(1),2
0 −ϑ

(1),2
1

)(
ϑ

(1),3
0 −ϑ

(1),3
1

)(
ϑ

(1),4
0 −ϑ

(1),4
1

)(
ϑ

(1),5
0 −ϑ

(1),5
1

)(
ϑ

(1),6
0 −ϑ

(1),6
1

)

For g = 1 all theta constants can be expressed in terms of three linearly independent ones

ϑ0, ϑ1, ϑ6 with the help of (4.3). If one does this and expands all brackets, one will obtain a

system of linear equations on {αi}, because after passing to linearly independent functions

all coefficients before monomials in them shall vanish if l.h.s. is subtracted from r.h.s. It

turns out that in this g = 6 case the system of equations simply does not have solutions.

Thus the factorization constraint cannot be satisfied. For example, if one does the same

things for g = 5, one will obtain result (4.17).

5 Lattice theta constants vs Riemann theta constants

In this section we describe the relation between lattice and Riemann theta constants and

write down explicit formulae, expressing ones in terms of the others. Namely, we prove that

ϑ(g)
p = 2−gpξ(g)

p , p = 0 . . . 4 (5.1)

in any genus. For p = 0 and p = 1 the statement is rather trivial and already known.

Consider the p = 2 case. First, note that the factor of θ4
0 is common to the l.h.s. and

to the r.h.s. of (5.1) in this case, so we divide it out. Then for the right hand side we have

ξ
(g)
2 /θ4

0 =

Ne∑

e1,e2

θ4
e1

θ4
e2

θ4
e1+e2

=

Ne∑

e1,e2

∑

~na
I
∈Zg ,

a=1..4,

I∈2{1,2}\(∅)

exp

(
πi

(
∑

a

(
~na

1 +
~δ1

2

)T

τ

(
~na

1 +
~δ1

2

)
+

+
∑

a

(
~na

2 +
~δ2

2

)T

τ

(
~na

2 +
~δ2

2

)
+
∑

a

(
~na

12 +
~δ1 + ~δ2

2

)T

τ

(
~na

12 +
~δ1 + ~δ2

2

)
+

+

(
∑

a

~na
1

)T

~ε1 +

(
∑

a

~na
2

)T

~ε2 +

(
∑

a

~na
12

)T

(~ε1 + ~ε2)

))
(5.2)

We can perform summation over ~ε1, ~ε2. Since they take values in (Z2)
g and enter the

expression as factors of

exp


πi

(
∑

a

~na
1 + ~na

12

)T

~ε1


 (5.3)
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and

exp


πi

(
∑

a

~na
2 + ~na

12

)T

~ε2


 (5.4)

then all terms, in which at least on element of integer vectors ~v1 =
∑

a (~na
1 + ~na

12) and

~v2 =
∑

a (~na
2 + ~na

12) is odd, vanish, and all terms with all these elements being even survive

and acquire a factor of 22g. Therefore, expanding also the sum in ~δ, we obtain

ξ
(g)
2 /θ4

0 = 22g
∑

(Λ+
2 )

g

exp


πi

g∑

i,j=1

(ni, nj) τij


 , (5.5)

where Λ2 ⊂ Z
12 is a 12-dimensional lattice defined as

Λ2 =

{
(
n1

1, . . . , n
4
1, n

1
2, . . . , n

4
2, n

1
12, . . . , n

4
12

)
∈ Z

12

∣∣∣∣
(
∑

a

na
1 +

∑

a

na
12

)
...2,

(
∑

a

na
2 +

∑

a

na
12

)
...2

}
(5.6)

and

Λ+
2 = Λ2 ∪ (Λ2 + ~α) ∪

(
Λ2 + ~β

)
∪ (Λ2 + ~γ) , (5.7)

where

~α =

(
1

2
,
1

2
,
1

2
,
1

2
, 0, 0, 0, 0,

1

2
,
1

2
,
1

2
,
1

2

)
, (5.8)

~β =

(
0, 0, 0, 0,

1

2
,
1

2
,
1

2
,
1

2
,

1

2
,
1

2
,
1

2
,
1

2

)
, (5.9)

~γ =

(
1

2
,
1

2
,
1

2
,
1

2
,

1

2
,
1

2
,
1

2
,
1

2
, 0, 0, 0, 0

)
(5.10)

Therefore, since factors 22g and 2−2g perfectly cancel each other, to prove the lemma we

only need to prove that Λ+
2 turns to the usual representation of D+

12 under some orthogonal

transformation A : R
12 → R

12. We now show that this transformation is the following one:

A12 =
1

2




H4 0 0

0 H4 0

0 0 H4


 , (5.11)

where H4 is the following matrix

H4 =




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


 (5.12)

H4 is a so-called Hadamard matrix, see below for details.
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The D+
12 lattice is defined as

D+
12 =

{
(m1, . . . ,m12) ∈ Z

12 ∪

(
Z

12 +

(
1

2

12
)) ∣∣∣∣

(
∑

k

mk

)
... 2

}
(5.13)

It is then straightforward to check that A maps every point of Λ+
2 into point of D+

12 and

vice versa. Indeed, Λ2 consists of vectors (e, e, e) and (o, o, o), where e is either (0, 0, 0, 0) or

(1, 1, 1, 1) or one of the C4
2 = 6 vectors like (1, 1, 0, 0), while o is either of the type (1, 0, 0, 0)

or (1, 1, 1, 0). All entries are defined modulo 2. So,

Λ2 =
{

(e, e, e), (o, o, o)
}

(5.14)

Similarly

D12 =
{

(e, e, e), (e, o, o), (o, e, o), (o, o, e)
}

(5.15)

Now, denote by check a 4-vector shifted by (1/2, 1/2, 1/2, 1/2). Then

Λ+
2 =

{
(e, e, e), (ě, ě, e), (ě, e, ě), (e, ě, ě), (o, o, o), (ǒ, ǒ, o), (ǒ, o, ǒ), (o, ǒ, ǒ)

}
,

while

D+
12 =

{
(e, e, e), (ě, ě, ě), (e, o, o), (ě, ǒ, ǒ), (o, e, o), (ǒ, ě, ǒ), (o, o, e), (ǒ, ǒ, ě)

}

The action of 1
2H4,

(
1
2H4

)2
= I is as follows:

(0, 0, 0, 0) ↔ (0, 0, 0, 0)

(1, 1, 0, 0) ↔ (1, 0, 1, 0)

(1, 1, 1, 1) ↔ (2, 0, 0, 0)

(1, 0, 0, 0) ↔ (1/2, 1/2, 1/2, 1/2)

(1, 1, 1, 0) ↔ (3/2, 1/2, 1/2,−1/2)

(−1/2, 1/2, 1/2, 1/2) ↔ (1/2,−1/2,−1/2,−1/2)

what implies that e ↔ e, o ↔ ě and ǒ ↔ ǒ, so that, for A12,

(e, e, e) ↔ (e, e, e)

(o, o, o) ↔ (ě, ě, ě)

(ě, ě, e) ↔ (o, o, e)

(ǒ, ǒ, o) ↔ (ǒ, ǒ, ě)

This proves that A12 indeed converts Λ+
2 into D+

12 and vice versa.

It is interesting that basically everything is done by rotating vectors with the help of

an Hadamard matrix. An h-dimensional Hadamard matrix is a matrix formed by elements

of h h-dimensional vectors such that these elements can be only 1 or −1 and all these

h vectors are mutually orthogonal. It is an open problem if there exists an Hadamard
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matrix in every dimension 4k. For dimensions which are powers of 2 there exists a so-

called Sylvester construction of Hadamard matrices, which is built upon the following fact:

if h× h matrix Hh is an Hadamard matrix, then the following 2h × 2h matrix will also be

an Hadamard matrix:

H2h =

(
Hh Hh

Hh −Hh

)
(5.16)

Our H4 matrix which was used to rotate lattice is of this very type: it is built by applying

this construction two times to 1 × 1 matrix

(1) (5.17)

It turned out that for two other lattices, namely, with p = 3 and p = 4, everything

can be done also with the help of an Hadamard matrix. However in these cases we need

a 16 × 16 matrix H16 rather then a 4 × 4 Hadamard matrix H4. H16 is obtained from H4

again by applying the above construction two times. We do not present here its explicit

form, because it is too bulky, and it is straightforward to obtain it.

The proof for p = 3 case is then as follows: after dividing out the θ[0] common part

and performing summation over epsilons in a way analogous to p = 2 case we obtain a sum

over g copies of some lattice Λ+
3 . Λ3 is a subset of integer lattice in 14-dimensional space

with coordinates

(
n1

1, n
1
2, n

1
12, n

1
3, n

1
13, n

1
23, n

1
123, n

2
1, n

2
2, n

2
12, n

2
3, n

2
13, n

2
23, n

2
123

)
. (5.18)

Notation for indexes of n is analogous to the one used in p = 2 case. Denote n1
1 + n2

1 by

m1, n1
2 + n2

2 by m2 and so on. Then Λ3 is defined by the following conditions:

m1 + m12 + m13 + m123
... 2, (5.19)

m2 + m12 + m23 + m123
... 2, (5.20)

m3 + m13 + m23 + m123
... 2 (5.21)

Λ+
3 is then obtained from Λ3 by shifting it by vectors

(
1

2
, 0,

1

2
, 0,

1

2
, 0,

1

2
,
1

2
, 0,

1

2
, 0,

1

2
, 0,

1

2

)
, (5.22)

(
0,

1

2
,
1

2
, 0, 0,

1

2
,
1

2
, 0,

1

2
,
1

2
, 0, 0,

1

2
,
1

2

)
, (5.23)

(
0, 0, 0,

1

2
,
1

2
,
1

2
,
1

2
, 0, 0, 0,

1

2
,
1

2
,
1

2
,
1

2

)
(5.24)

and then taking union of three resulting lattices with the original one.

Then the final statement is that lattice (E7 ⊕ E7)
+ is turned into Λ+

3 by rotation with

orthogonal matrix A16 = 1
4H16, where H16 is the 16-dimensional Sylvester-type Hadamard

matrix. A question may arise: how can we rotate a priori 14-dimensional lattices into one

another using a 16 × 16 matrix? The answer is simple: the E7 lattice is usually defined in
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8-dimensional space (in fact it lies in a particular hyperplane inside 8-dimensional space),

and therefore (E7 ⊕ E7)
+ is naturally defined in 16-dimensional space, not 14-dimensional

one [20]. Therefore we can simply rotate (E7 ⊕ E7)
+ with the help of A16. And then it

turns out that the two auxiliary coordinates (namely, the first and the ninth ones) are zero

for images of all vectors of (E7 ⊕ E7)
+! Therefore we can just drop them out and obtain a

14-dimensional lattice. Simple technical calculations, which we do not provide here, show

that this 14-dimensional lattice is indeed Λ+
3 (basically this calculations consist of checking

that image of every basis vector can be shifted back by one of the three vectors (5.22)–

(5.24) to an integer vector satisfying conditions (5.19)–(5.21)). This finishes the proof of

relation (5.1) for the p = 3 case.

The proof for p = 4 is absolutely analogous to p = 3 one except there will be 15-

dimensional space instead of 14-dimensional. It is interesting that everything is again

achieved with the help of the same A16 matrix as in the previous case.

Now it is clear, why we chose our enumeration for lattice theta constants. It was done

because functions ξp have natural enumeration, and functions ϑp correspond to them for

p = 0 . . . 4.

We end this section by reminding the well-known formulae for the lattice theta con-

stants for even 16-dimensional lattices, i.e. for E8 ⊕ E8 and D+
16:

ϑ
(g)
6 = 2−2g

(
∑

e

θ8[e]

)2

, (5.25)

ϑ
(g)
7 = 2−g

∑

e

θ16[e] (5.26)

6 The strange lattice

In the previous section we discussed the fact that, for p = 0 . . . 4, functions ϑp coincide

(up to a simple constant factor) with the functions ξp. That is, the lattice theta series for

lattices Z
16, Z

8 ⊕ E8, Z
4 ⊕ D+

12, Z
2 ⊕ (E7 ⊕ E7)

+ and Z ⊕ A+
15 are equal to combinations

of the same type of ordinary theta constants.

However, there is one more odd 16-dimensional lattice, namely (D8 ⊕ D8)
+. To our

surprise, the corresponding lattice theta constant, ϑ5, behaves very different from the oth-

ers.

With the help of OPSMY linear relations (4.3)–(4.6) between lattice theta constants

we can express ϑ5 through ϑ0, . . . , ϑ4 for every genus g ≤ 4. Then, knowing the formulae

from the previous section, expressing ϑ0, . . . , ϑ4 through the ordinary theta constants, we

can do the same with ϑ5 for all genera g ≤ 4. It turns out that these expressions in all

these genera follow one and the same pattern:

ϑ
(g)
5 =

M
2−

g(g−1)
2

(
g∏

i=1

(
2i − 1

)
)−1

G(g)
g , g ≤ 4 (6.1)

Thus the last lattice theta constant surprisingly coincides (again up to a constant factor,

this time a little bit more sophisticated) with an expression through the ordinary theta
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constants of the second type of the two mentioned in section 3. This, however, is valid only

on Jacobian locus, because for genus 4, where for the first time Jacobian locus differs from

the entire Siegel half-space, the linear relation (4.6) holds only on Jacobian locus. On the

entire Siegel half-space formula (6.1) would then look like

ϑ
(4)
5 =

1

26 · 315
G

(4)
4 +

3

7
(ϑ6 − ϑ7) = (6.2)

=
1

26 · 315
G

(4)
4 −

3

28 · 7
F (4) (6.3)

We could not prove the formula (6.1) by a direct method like the one used for other

lattices. This is unfortunate, because starting from genus 5 there are no linear relations

between lattice theta constants. Therefore a question arises: would lattice theta constant

ϑ5 continue to follow the same pattern (6.1) for genera g ≥ 5? At the moment we cannot

answer this question due to various technical difficulties. Of course, equality of type (6.1)

for genus 5 cannot be valid on entire Siegel space, since the right hand side, i.e. G
(5)
5 ,

contains square roots of monomials in theta functions, and therefore possesses singularities

on the entire Siegel space. However, R. Salvati Manni in the paper [9] argued that all

this singularities lie outside Jacobian locus. Thus the equality could in principle be true,

if restricted on Jacobian locus, despite it would be a rather mysterious theta-constant

identity. Perhaps, it can help to shed some light on the possible explicit form of Schottky

identities at higher genera.

7 Relations between Grushevsky and OPSMY ansätze

In this section we briefly discuss relation between the two ansätze for NSR measures.

If we substitute expressions (5.1) for the lattice theta constants into the formu-

lae (4.13)–(4.16) for OPSMY ansatz for genera g from 1 to 4, we straightforwardly obtain

formulae (3.7)–(3.10) for Grushevsky ansatz. Therefore for g ≤ 4 both ansätze coin-

cide, which is in perfect agreement with uniqueness properties of OPSMY and Grushevsky

ansätze.

For genus g = 5 case it is difficult to compare these two ansätze because we do not

know how ϑ5 relates to ordinary theta constants. We can do this if we assume that (6.1)

continues to hold beyond g ≤ 4, i.e. that

ϑ
(5)
5

?
=
M

2−
5(5−1)

2

(
5∏

i=1

(
2i − 1

)
)−1

G
(5)
5 (7.1)

If we make this assumption, then we again can substitute all expressions for lattice theta

constants into expression (4.17) for OPSMY ansatz and see that the resulting formula is the

same that (3.11) for Grushevsky ansatz. Additional parts, entering modified expressions

for ansätze that come from subtracting cosmological constant divided by the number of

characteristics, are then also equal. Thus, if the function ϑ5 continues to follow for g = 5 the

same pattern it followed for g ≤ 4 – despite G
(5)
5 contains square roots! – then Grushevsky

and OPSMY ansätze coincide at genus 5 too.
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8 Conclusion

In this paper we discussed some relations between lattice and Riemann theta constants and

ansätze for superstring measures which are written in terms of them. We presented ex-

plicit formulae expressing lattice theta constants for eight 16-dimensional self-dual lattices

through Riemann theta constants. This was then used to explicitly show that Grushevsky

and OPSMY ansätze coincide for g ≤ 4, as it was originally predicted. However, already

for g = 5 there are difficulties to see if the ansätze remain the same. This is related to the

strange behaviour of the theta constant, associated with one of the lattices, (D8 ⊕ D8)
+.

It is a very interesting problem to see exactly, how it can be expressed through Riemann

theta constants for genera g ≥ 5. Coincidence of ansätze implies a very elegant – but

also extremely surprising — formula for this lattice theta-constant, but we did not find an

equally nice way to prove (or to reject) it.

At the same time, despite the beauties, once again found in this paper in the world of

the modular forms, it seems that hypothesis that NSR measures can be always expressed

in their terms is overoptimistic. Most probably, like Mumford measure dµ itself, the ratio

of dµ[e]/dµ is going to be a function on moduli space without a natural non-singular

continuation to entire Siegel half-space. At best it can contain Schottky-related forms in

denominator, like it happens to dµ at genus g = 4 [6]. To find these ratios for genera g ≥ 5

one should apply or invent some other technique.
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